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Universality of the off-equilibrium response function in the kinetic Ising chain
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The off-equilibrium response functionx(t,tw) and autocorrelation functionC(t,tw) of an Ising chain with
spin-exchange dynamics are studied numerically and compared with the same quantities in the case of spin-flip
dynamics. It is found that, even though these quantities are different in the two cases, the parametric plot of
x(t,tw) versusC(t,tw) is the same. While this result could be expected in higher dimensionality, wherex(C)
is related to the equilibrium state, it is far from trivial in the one-dimensional case where this relation does not
hold. The origin of the universality ofx(C) is traced back to the optimization of domains position with respect
to the perturbing external field. This mechanism is investigated resorting to models with a single domain
moving in a random environment.
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I. INTRODUCTION

The generalization of the fluctuation-dissipation theor
~FDT! to slowly relaxing systems, such as glasses, is an is
of foremost importance for understanding nonequilibriu
processes. Ordinary FDT relates the autocorrelationC(t,tw)
and the integrated responsex(t,tw) functions, which both
depend in equilibrium on the time differencet2tw , wheretw
is the time elapsed after the sample preparation. A gen
feature of slow kinetics, instead, is the aging prope
namely, the dependence of the time scale of relaxation on
time tw . This feature generally shows up both inC(t,tw) and
x(t,tw). In the context of mean-field models for spin glass
it was shown@1# that, for largetw , x(t,tw) depends on the
two times through the autocorrelation function alone,

x~ t,tw!5x@C~ t,tw!#. ~1!

This property holds quite generally in a wide class of ag
systems where deviations from the ordinary equilibriu
FDT, namely, Tx(C)5C(t,t)2C(t,tw), result in a non-
trivial fluctuation-dissipation ratioX(C)52Tdx(C)/dC.
Recently, a theorem has been proved@2# linking X(C) to
static properties,

dX~C!

dC U
C5q

5P~q!, ~2!

whereP(q) is the equilibrium probability distribution of the
overlaps. This opens the way to a classification of ag
systems according to the structure of their equilibrium sta
@3# and to the recognition that the properties of the respo
to a perturbation are universal in systems sharing the s
overlap distribution.

The ordering process of ferromagnetic systems provid
simplified framework for the study of the off-equilibrium
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FDT because the main features of slow relaxation are fu
exhibited but the structure of their equilibrium state is simp
and exactly known. While Eq.~1! is generally obeyed@3–5#,
the validity of Eq.~2! in this case depends on dimensionali
For d.1, Eq. ~2! holds asymptotically, implying the sam
fluctuation-dissipation ratio, and hence ofx(C), for all these
systems@3#. This applies, in particular, to different dynam
cal realizations of the same Hamiltonian model such as
romagnets with nonconserved~NCOP! or conserved~COP!
order parameter@4#. However the picture is totally differen
in the case of the Ising chain. With NCOP, Eq.~2! is not
obeyed@5# and, instead, a nontrivialX(C) is found @6# that
cannot be connected to static properties.

These results suggest that the nature ofX(C) is essen-
tially dynamical in this case. A natural question, then,
about which properties of the kinetics are reflected byx(C).
In order to address this point, we study in this paper
response of the one-dimensional Ising model with Kawas
spin-exchange dynamics quenched to a low temperature
the scaling regime preceding equilibration. In this case
order parameter is conserved and the microscopic me
nism whereby coarsening of domains is produced diff
completely from the dynamics with single spin flip. Wit
NCOP interfaces are independent Brownian walkers wh
density is progressively reduced due to annihilation eve
With COP, instead, the motion of interfaces is mediated
evaporation, diffusion, and recondensation of single mo
mers. Despite this completely different character of the
namics, we show thatx(C) is the same for COP and NCOP
Due to the violation of the hypotheses of theorem~2! this
universal character cannot be traced back to statics but
more likely to have a common dynamical origin. Since t
basic coarsening mechanisms with COP or NCOP are
foundly different, other kinetic properties, of a more gene
and fundamental nature, determinex(C). The analysis car-
ried out in this article shows that the total response can
viewed as due to the elementary contributions given
single domains. In the kinetic process domains coarsen
translate and the complex interplay between these
mechanisms produces the response. Starting from this
we introduce simple models where a single domain is
©2002 The American Physical Society14-1
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lowed to diffuse in a random environment. In this fram
work, the elementary response generated by the domain
be studied and from its knowledge the behavior of the or
nal Ising chain is inferred by means of scaling argumen
The details of the rules for the motion do not change
overall behavior of the response. This approach provide
clear physical interpretation of how the response is produ
in the Ising model.

These considerations are of a general nature and app
principle, to any dimension. On the other hand, the occ
rence ind51 of an off-equilibrium response that never va
ishes, as opposed to the cases withd.1, is due to the specia
character of domain walls motion in one dimension. Ac
ally, in d.1 the evolution of a domain is the result of tw
competing drives. The first is the tendency to lower surfa
tension by making interfaces straight. The second is the d
towards regions where the random field is favorable.
long times the first mechanism always prevails, and the
sponse generated by the drift of domains is negligible@5#. In
d51, instead, domain walls are pointlike and surface tens
does not play any role; moreover the drift mechanism is
efficient as to generate a nonvanishing response even in
limit of large times, when the interface density decrease
zero.

This paper is organized in six sections. Section II is d
voted to a description of the COP dynamics of the unp
turbed Ising chain. In Sec. III the effects of a perturbation
discussed and the response function is introduced, show
the analogy with the NCOP dynamics and the universality
x(C). Models for a single diffusing domain are discussed
Secs. IV and V, where scaling arguments are presente
illustrate the common origin of the response within the t
types of dynamics. In Sec. VI we discuss the relevance
our results for different systems and draw some conclusio

II. UNPERTURBED DYNAMICS

We consider the one-dimensional Ising model with fer
magnetic nearest-neighbor coupling constant, whose Ha
tonian is

H0~$si%!52J(
i 51

N

sisi 11 , ~3!

wheresi561. The system is quenched from an uncorrela
high temperature equilibrium state to the final temperatureT.
Evolution takes place through Kawasaki spin-exchange
namics, i.e., swaps between antiparallel nearest-neig
spins. In this way magnetization is a conserved quantity.
model describes lattice gases or binary alloys. The proba
ity of exchangingsi ,si 11 is assumed to be

pT5min@e2DE/T,1#, ~4!

whereT is measured in units of the Boltzmann constant a
DE52J(si 21si1si 11si 12) is the energy change.

The basic features of the dynamics following an instan
neous quench are discussed in Ref.@7#. Depending on the
energy change elementary moves can be distinguished
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three classes withDE54J,0,24J. The first kind of process
is evaporation, namely, the separation of a spin from
boundary of a domain. Processes withDE50 are the diffu-
sion of a single spin~monomer! in the bulk of a domain of
the other phase. When a diffusing monomer reaches an
terface a condensation event occurs: The spin joins a dom
This process implies an energy changeDE524J.

Evaporation is an activated process occurring over a c
acteristic timetev5exp(4J/T). For low temperaturestev is
large and one observes a long intervalt!tev during which
evaporation practically does not happen. In this regim
reduction of the kink densityr(t) can be obtained only by
the diffusion and condensation of the monomers presen
the initial state. In order to do this single spins move a d
tance of the order of the initial coherence lengthj in a typi-
cal time j2. This leads to a decay@7,8# of the density of
diffusing single spins over a characteristic timets;j2. In
the case we are concerned with, a quench from very h
temperature,ts is of order unity and one observes a fa
decay to a plateau on short time scales~Fig. 1!. In the regime
ts!t!tev no diffusing spins are left andr(t) remains con-
stant. At times of ordertev evaporation events begin to occu
and the dynamicsrestarts~Fig. 1!. Evaporated spins diffuse
and they may recondense on a kink different from the o
where they were emitted. This is the well known mechani
leading to the decayr(t)}(t/tev)21/3 @7#: in this regime,
dynamic scaling is obeyed. This behavior lasts untilt
.teq

COP such thatr(teq
COP)5req.exp(22J/T), the equilib-

rium kink density. At this time domains reach a size such t
a second monomer is emitted when the first one is still d
fusing. When they meet they form a stable dimer and t
process exactly balances the domain annihilation due to
evaporation-condensation mechanism, so thatr keeps its
equilibrium value. Regarding the data presented in Fig. 1,
T50.7 the exponent 1/3 is not clearly observed because

FIG. 1. The kink densityr is plotted against time~measured in
Monte Carlo steps! for quenches withT50.48 andh50 ~black
solid line! andT50.7, both with the perturbation (h51022, black
bold solid line! and without (h50, white solid line collapsing on
the curve withh51022). Data refer to numerical simulations of
system ofN5105 spins, averaged over 10 realizations. The das
line represents thet21/3 law.
4-2
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UNIVERSALITY OF THE OFF-EQUILIBRIUM . . . PHYSICAL REVIEW E65 066114
system equilibrates too soon. ForT50.48 the effective ex-
ponent gradually decreases toward 1/3. At the longest ti
simulated the effective exponent is.0.3.

The autocorrelation function is defined as

C~ t,tw!5
1

N (
i 51

N

^si~ t !si~ tw!&, ~5!

where ^•••& indicates thermal averaging. This quantity
shown in Fig. 2.C(t,tw) strongly depends on the range
times (tw ,t) considered. In the casetw!teq

COP considered
here the behavior of the autocorrelation function is differ
for t!teq

COP or t@teq
COP . For t!teq

COP C(t,tw) decays as
@r(t)/r(tw)#l. The exponentl depends ontw as follows:
When tw50, the upper boundl<d, originally proposed by
Fisher and Huse@9# provides the correct valuel51 for the
conservedd51 Ising model, as shown analytically and n
merically in Ref.@10#. Instead, fortw chosen well inside the
scaling regime, Yeung, Rao, and Desai@11# found a lower
boundl>3/2 for d51. Sincel51 for tw50 this constraint
implies the dependence ofl on tw . To our knowledge, there
are no results for the actual value of this exponent whentw
Þ0. From the data presented in Fig. 2 one observes a po
law decay consistent withC(t,tw);(tw /t)1/2 for the cases
tw5104,105. Recalling thatr(t);t20.3 in the range of time
considered, one obtainsl.1.66.3/2. In this way we show
that the lower bound determined in Ref.@11# is correct and
that the value ofl with tw chosen inside the scaling regim
is different from the case withtw50. Actually, the valuel
.1.66 may indicate that the valuel53/2 could be asymp-
totically correct. In order to check this point lower temper
tures and larger waiting times should be considered. By p
ting C(t,tw) againstr(t)/r(tw) we have also checked tha
the curve with tw5103 gives the same exponentl.3/2,
whereas the smaller exponent observed in Fig. 2 is sim
due tor(t) decaying with an effective exponent considerab
smaller than 1/3 in the range of times plotted in the figu
For tw5106 the curve starts decaying with the same exp

FIG. 2. The autocorrelation functionC(t,tw) is plotted against
rescaled time (t2tw)/tw . The dashed line represents the la
@(t2tw)/tw#21/2.
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nentl53/2 but then the decrease becomes faster, indica
that the system is close to reaching equilibrium. A seco
important observation, regarding Fig. 2, is the converge
of C(t,tw) towards the scaling behaviorC(t,tw)5Ĉ(tw /t),
as expected quite generally for slow relaxation@12# and in
particular for coarsening systems@13#. However, differently
from NCOP, the convergence in this case is very slow a
very largetw must be considered in order to exhibit a go
data collapse.

III. RESPONSE TO A PERTURBATION

Let us consider the Ising model quenched to tempera
T in zero field. At timetw a random field

hi5he i ~6!

is applied, so that the Hamiltonian is changed into

H5H02(
i 51

N

hisi . ~7!

The field takes randomly only two values,e i561, with ex-
pectations

e i50, ~8!

e ie j5d i , j . ~9!

The probability of exchanging two spinssi ,si 11 is Eq. ~4!
with DE52J(si 21si1si 11si 12)12h(sie i1si 11e i 11). We
considerh/T sufficiently small in order to be in the linea
response regime. We are interested in the scaling regime,
times such thatr(t)@req . Moreover we want the qualitative
features of the dynamics, presented above, to be unaffe
by the external field. This imposes an additional constra
r(t)@j21(h), wherej(h)54J2/h2 is the Imry-Ma length
@14#. For the values ofh andT considered,j21(h)!req so
that r(t) is unchanged by the presence of the random fi
from the instant of the quench up to equilibration~Fig. 1!.

We consider the integrated response function

x~ t,tw!5 lim
h/T→0

1

Nh (
i 51

N

e i^si&h, ~10!

where ^•••&h denotes average in presence of the exter
field. Before discussing the response of the model with C
let us briefly recall the behavior with NCOP. In this ca
equilibrium is reached because spins are flipped spont
ously in the bulk of ordered domains; the characteristic ti
for this process isteq

NCOP5exp(4J/T). The asymptotic value
of the response function is the equilibrium susceptibility

xeq51/T, ~11!

namely, limt→`Tx(t,tw)51. In equilibrium the bulk of do-
mains is responsible for the response because spins
aligned with the random field are more likely to be revers
by thermal excitations. However, for timest,teq

NCOP spins in
the bulk do not flip; the response observed in this regime
4-3
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then of nonequilibrium nature. Since the bulk is froze
x(t,tw) must be provided by interfaces. Specifically the m
tion of kinks is such as to optimize the position of doma
with respect to the random field, building up a finite respon
@5#. The range of times over which the nonequilibrium p
tern is observed can be expanded by lettingT→0 ~keeping
h/T small, for linear response theory to hold!, or J→`. We
refer to the latter limit for simplicity, that has the advanta
of being easily implemented numerically by forbidding t
flip of spins in the bulk. WithJ5`, teq

NCOP5` and the
system never equilibrates. The exact solution of the mo
@6# with J5` yields the aging form

Tx~ t,tw!5
A2

p
arctanA t

tw
21 ~12!

that converges, in the larget limit, to

Tx`5
1

A2
~13!

for larget. For finiteJ, as already anticipated, the response
the model is the same as withJ5` for times t!teq

NCOP

while, for larger times, the equilibrium susceptibility is r
covered.

For what concerns the generalization~1! of the FDT, no-
tice that Eq.~12! obeys the scaling formx(t,tw)5x̂(tw /t).
Hence eliminatingtw /t with C(t,tw)5Ĉ(tw /t) with J5`
one finds

x~C!5
A2

p
arctanFA2cotS p

2
CD G . ~14!

This curve is plotted in Fig. 3. In the limitC(t,tw)→0,
namely,t→`, the valuex` is recovered, as previously dis
cussed. For finiteJ the behavior ofC(t,tw) and x(t,tw) is

unchanged with respect to the caseJ5` up to teq
NCOP.

Therefore, in the fluctuation-dissipation plot in Fig. 3 t

FIG. 3. The integrated response function is plotted against
autocorrelation function with NCOP. The dashed line is the c
with J5`.
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same curve as withJ5` is followed from C(tw ,tw)51
down toCeq5C(teq

NCOP,tw). ForC(t,tw),Ceq , namely, for
t.teq

NCOP, the system goes to equilibrium,x(C) departs
from the master curve withJ5` and approachesxeq . For

fixed tw , Ceq grows with temperature, becauseteq
NCOP de-

creases asT is increased. Alternatively, for a given temper
ture, Ceq grows by increasingtw . In conclusion, the maste
curve is followed in a wider range by decreasingtw or T,
because in this wayCeq is reduced. This explains the beha
ior of x(C) in Fig. 3.

For Kawasaki dynamics the kinetic process is more co
plex than in the nonconserved case. The different coarse
mechanism does not simply change the growth law ex
nent, but even the two-time quantities considered here
radically modified with respect to NCOP. In particular,
discussed in the preceding section, the exponentl53/2 dif-
fers from the value@15# l51 for Glauber dynamics. Given
these differences the fact that the fluctuation-dissipation
turns out to be the same for NCOP and COP, as will
shown below, is unexpected and far from being trivial.

The fluctuation-dissipation plot with COP is shown in Fi
4. Curves with differenttw collapse on the same mast
curve forC(t,tw).Ceq . The collapse of curves with differ
ent tw proves the validity of Eq.~1! in the scaling regime
even with COP. Moreover, this master curve is the same
with NCOP. As for NCOP, the collapse occurs only wh
both timest andtw belong to the scaling regime. With NCO
scaling is obeyed starting from a microscopic timet0, which
is temperature independent@16#; with COP this regime is
entered aftertev , which depends onT. Therefore, for low
temperatures the time scales over which curves with differ
tw coincide are completely different in the two cases, as
vealed from the waiting times reported in Figs. 3 and
Comparing the two figures, one also concludes that chang
tw or T only produces a shift ofCeq , the point wherex(C)
deviates from the master curve, in complete analogy for b

e
e

FIG. 4. The integrated response function is plotted against
autocorrelation function with COP. Data are obtained from num
cal simulations of a system ofN5105 spins withh51022, aver-
aged over 4000 realizations. The dashed line is the case with N
andJ5`, as in Fig. 3.
4-4
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UNIVERSALITY OF THE OFF-EQUILIBRIUM . . . PHYSICAL REVIEW E65 066114
dynamics. Then, on the basis of what is known with NCO
we expect in the zero temperature limit the master curve
be followed down toC(t,tw)50. Let us stress that the co
relation and the response functionsare differentfor the two
dynamics. Only when the responsex(t,tw) is expressed as
function of the correlationC(t,tw) one obtainsthe same
fluctuation-dissipation relationx(C).

The universality of the nonequilibrium response with r
spect to the type of dynamics naturally raises the questio
a possible common fundamental origin. As proposed in S
I, this must be of a dynamical character, since the connec
~2! between statics andx(C) cannot be invoked ind51.
The main dynamical feature of phase ordering is the p
ence of a coarsening structure with many competing
mains. This suggests to look for the underlying universa
in the response of a single domain to the perturbation
order to test this idea, in the following sections we inves
gate simplified models for the motion of a single doma
Underlying this approach is the assumption thatx(t,tw) of
the whole system can be seen as the sum of the respon
single domains considered independent. Correlations
tween domains are only responsible for the growth of th
typical size. In this way we are able to identify the diffusiv
wandering of domains as the origin of the nonequilibriu
response, both for NCOP and COP dynamics.

IV. A SINGLE-DOMAIN MODEL WITH RIGID DIFFUSION

Let us consider an isolated domainDl of up spins cover-
ing the segment@ j , j 1 l # of an infinite one-dimensional lat
tice. A quenched random variablehi is defined on the sites o
the lattice via~6,8,9!. At each time stepDl is allowed to
move rigidly one lattice unit on the right or on the left wit
probability given by Eq.~4!, with DE5hj2hj 1 l 11 or DE
5hj 1 l2hj 21, respectively. The model can be regarded as
Ising chain with an initial condition containingl up spins in
the interval@ j , j 1 l # in a sea of down spins. This Ising mod
is governed by a dynamical rule that conserves the magn
zation and allows only rigid translations of the up doma
DE is then exactly the energy gain computed through
Ising Hamiltonian~7! with i running over the sites occupie
by the domain.

For h50 the landscape is flat and the positionx of the
center of the domain performs a random walk. Provided
linear response regime (h/T→0) is considered, also for fi
nite h the root-mean-square displacementDx(t,tw) in a time
interval @ tw ,t# obeysDx(t,tw);At2tw, as shown in the in-
set of Fig. 5. The response function of the domain is defi
as

x̃Dl~ t,tw!5 lim
h/T→0

1

hK (
i PDl

e i L
h

. ~15!

The notation̂ •••&h indicates averaging, for a single realiz
tion of the random field, over the trajectories ofDl . Notice
that, differently from Eq.~10!, i runs only over sites ofDl .

Let us consider the behavior ofx̃Dl(t,tw) for short times.
Initially, at t5tw , the response is zero. By moving on
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lattice spacing the sum in Eq.~15! can change by a value
0,12,22. In the first two cases the energy is unchanged
decreased; in the last oneDE.0 and the probabil-
ity that such a move is accepted is exp(22h/T). Then,
averaging over the trajectories and the random fie
Eq. ~15! gives Tx̃Dl(tw11,tw) 5 limh/T→0@T/h#^( i PDl

e i&h

5 limh/T→0T@1#2exp(22h/T)]/(2h). Taking the limit h/T
→0 the linear response function followsTx̃Dl(tw11,tw)
51.

For long timesx̃Dl(t,tw) approaches, assuming equilibr
tion, the static susceptibility

x̃eq
Dl5 lim

h/T→0

T

h

] ln Z~h,T!

]h
, ~16!

where

Z~h,T!5 (
k50

l

pke
2[h( l 22k)]/T ~17!

is the partition function. Herek is the number of sites inside
the domain wheree i51 andpk5( k

l )22 l is the probability of
having a particular value ofk. From Eq.~17! one easily finds

Z~h,T!5FcoshS h

TD G l

~18!

yielding Tx̃eq
Dl5 limh/T→0( lT/h)tanh(h/T)@cosh(h/T)#l215l.

The behavior ofx̃Dl(t,tw), obtained numerically, is plot-
ted in Fig. 5, showing the validity of the scaling form

FIG. 5. The scaled single-domain responseTl21x̃Dl(t,tw) is
plotted against Dx(t,tw)/ l for T50.7, h51022, and tw50.
Circles, squares, and diamonds correspond to domains of sl
510,20,40, respectively. Averages are taken over 106 trajectories.
The dashed line is the analytic behavior for smallDx. Triangles are
the response of a domain whose average sizeL(t) grows according
to L(t)5101At/8. In the inset the behavior ofDx(t,tw) is plotted
for a domain of sizel 540 with tw50. The dashed line represen
the law (t2tw)1/2.
4-5
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CORBERI, CASTELLANO, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E65 066114
Tx̃Dl~ t,tw!5 lg~y!, ~19!

wherey(t,tw)5Dx(t,tw)/ l . The scaling function behaves a

g~y!5H y for y!1,

1 for y@1,
~20!

in agreement with the analytical results for short and lo
times.

So far we have studied a model where the sizel of the
domain is conserved by the dynamical rule. However, in
der to apply this result to the description of the Ising cha
where domains coarsen, we consider now a slightly modi
version where the size of the single domain varies stocha
cally while growing on average. In such a situation, we
dicate with l (t) the size of the domain at timet, with L(t)
the average ofl (t), and definey(t,tw) via

y~ t,tw!5Dx~ t,tw!/L~ t !. ~21!

We have performed numerical simulations where the s
l (t) of Dl was increased with a stochastic rule such t
L(t)5L(0)1aAt, with L(0)510 anda51/8 ~these values
are chosen for numerical convenience!. Figure 5 shows tha
even in this case the scaling form~19!,~20! holds.

Connection with the Ising model

From the knowledge of the response of a single dom
we can recover the behavior of the Ising chain, where m
domains compete, by assuming that the latter can be
equately described by a collection of quasi-independent
mains of average sizeL(t). This means that all effects pro
duced by correlations between domains, apart from
increase ofL(t), are supposed not to be relevant. This
sumption will be further discussed in Sec. V.

The overall response of the Ising model is then given

x~ t,tw!5(
l

P~ l ,t !x̃Dl~ t,tw!, ~22!

whereP( l ,t) is the fraction of spins belonging to domains
size l at time t, which obeys@17# the scaling formP( l ,t)
5L(t)21f @ l /L(t)#. The analysis can be carried out mo
easily with the approximationf (x).d(x21), i.e., assuming
that all domains have exactly the same sizeL(t). Then

x~ t,tw!.L~ t !21x̃DL~ t,tw!.
1

T
g~y!, ~23!

where y(t,tw) is defined by Eq.~21! and Dx(t,tw) is the
average distance traveled by domains of sizeL(t). On the
basis of the large time behavior ofy(t,tw), three situat-
ions can be distinguished, namely, limt→`y(t,tw)5`,
limt→`y(t,tw)5const.0 or limt→`y(t,tw)50, giving rise
to different values for the response.

The first case occurs in the equilibrium state of the Is
model because domains diffuse while their size stays c
stant due to the formation of new kinks. On the basis of
~23!, for the total response of the Ising chain one obta
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limt→`x(t,tw)5xeq51/T. This is indeed the value~11!
found for the original Ising chain.

The second case, limt→`y(t,tw)5const.0, occurs when
Dx(t,tw) andL(t) grow with the same exponent. This ha
pens in the scaling regime, both with spin-flip or Kawasa
dynamics. With NCOP this is true because interfaces
Brownian walkers,

Dx~ t,tw!;~ t2tw!1/2, ~24!

while it is well known @13# that

L~ t !;t1/2. ~25!

With spin-exchange dynamics the behavior ofDx(t,tw)
can be obtained with the following argument: The displa
ment of domains is mediated by the evaporation and cond
sation of monomers. When a monomer travels a dista
L(t), leaving one domain and joining the nearest, one of
boundaries of each of the two domains is displaced by
lattice unit. The number of monomers per unit time th
leave a domain and reach the neighbor instead of recond
ing on the original one isr(t) @7#. Hence, on average, i
takes a time;L(t) to move a domain by a unitary distanc
Since domains move randomly the law of Brownian moti

@Dx~ t,tw!#252D~ t2tw! ~26!

is obeyed, with a diffusion coefficient

D;r~ t !. ~27!

Using the appropriate growth law for COP,

L~ t !5r~ t !21;t1/3, ~28!

one gets

Dx~ t,tw!;@~ t2tw!/t1/3#1/2. ~29!

Hence for long timesDx(t,tw);tb, with b51/2 for NCOP
and b51/3 for COP. Comparing Eqs.~24!, ~25!, ~28!, and
~29! one concludes, as already anticipated, thatDx(t,tw)
;L(t) regardless of the dynamical rule. Hence, recalling E
~21! one obtains withboth dynamics the universal form

y5y`S 12
tw

t D 1/2

, ~30!

where y` is a constant that may depend on the dynami
rule. Inserting this expression into Eq.~23! one recognizes
that the global response obeys the scaling behaviorx(t,tw)
5x̂(tw /t) which, as discussed in Sec. III, is correct for th
Ising chain. Moreover one also obtains limt→`y5y`,`
and, therefore, an asymptotic nonequilibrium valuex`

5g(y`)/TÞxeq is generated. This limiting value is differen
from the static susceptibilityxeq becausey` is finite, as op-
posite to the equilibrium case discussed above wh
limt→`y5`. This is in agreement with the behavior of th
original Ising model~13!, with both dynamics.

Our approach does not allow the evaluation ofy` . How-
ever it reproduces the main features of the nonequilibri
4-6
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response and offers an insight into what goes on after a
turbation has been switched on in the one-dimensional Is
model. In particular, the model points out clearly which
the mechanism whereby the response is produced. Actu
the domain responds to the perturbation by moving so a
optimize its position with respect to the random field. Suc
sharp statement is made possible in this context by the
that the dynamical rules do not allow any other possibi
and indicates that the same mechanism is at work also in
Ising chain. The discussion presented insofar shows also
another physical ingredient plays a fundamental role ind
51: The convergence to a finite value ofy(t,tw), namely,
limt→`y(t,tw)5y`Þ0. This property holds because the d
placement of domains ind51 is proportional to their aver
age size. With these ingredients the one-domain model
dicts a finite limiting value limt→`x(t,tw)5x` of the
response of the Ising chain. We emphasize that the prop
limt→`y(t,tw)5y`Þ0 is far from being trivial. Although we
restrict the analysis in this paper to one dimension, we
lieve this to hold only in thed51 case. As discussed in Se
I, in one-dimension domains diffuse in order to lower t
magnetic energy in absence of the additional force produ
by surface tension, because kinks are pointlike objects
d.1, instead, the displacement of an interface is not o
ruled by the random field but is also governed by curvatu
This additional mechanism lowers surface tension and c
petes with the tendency to lower the magnetic energy.
weakening of the drift of domains limits their motion so th
Dx(t,tw) grows more slowly thanL(t). As a result
limt→`y(t,tw)50 and the response produced in this wa
from Eqs.~19! and ~20!, vanishes. Therefore, we expect th
third possible behavior ofy(t,tw) introduced above to be
realized ford.1.

V. A SINGLE-DOMAIN MODEL WITH SPIN EXCHANGE
DYNAMICS

In the preceding section we have discussed the diffus
of a rod of average sizeL(t). With this dynamics we have
obtained the formula~19! for the response. The connectio
with the Ising model was then made possible by scaling
guments whereDx(t,tw) andL(t) were assumeda priori to
behave as in the NCOP or COP Ising model. The dynam
of the rod, however, is quite different from the actual beh
ior of the Ising model, where generally domains do not mo
as a whole. Furthermore, while diffusion is the mechani
whereby interfaces move in the Ising model with NCOP,
stated by Eq.~24!, with COP the law~29! is obeyed, showing
a non-Brownian character. Despite these shortcomings o
model, we have obtained a good description of the Is
chain and this suggests that the actual details of the dyna
are irrelevant.

In this section we introduce an improved single-dom
model that takes into account the different kinetics for NC
and COP. In particular, for COP, the evaporatio
condensation mechanism that rules the evolution is ta
into account.

We study an Ising chain of sizeN with periodic boundary
conditions and two interfaces initially located inx151,x2
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5N/211. We consider both spin-flip and spin-exchange d
namics, and require the initial structure with only two d
mains of opposite sign to be preserved at all times. T
condition is guaranteed if the temperature is low enou
However simulations at very lowT would be numerically too
demanding, in particular for COP. For this reason we imp
ment the aforementioned condition in a different way: W
NCOP we letJ5` by forbidding flips in the bulk. For COP
we use a modified dynamics where new dimers are not
lowed to form. Specifically, when two monomers meet, o
of the two particles is removed and attached randomly
another kink. With these rules a configuration with only tw
domains persists.

Let us focus on one of the two domains, indicated withD,
with the center located in (x11x2)/2. With COP the system
evolves via exchanges of monomers between the two bou
aries ofD. Since at lowT at most one monomer is prese
the size l 5x22x1 of D is practically conserved. With
NCOP, on the other hand, interfaces diffuse independe
and the size changes. We consider the range of timet
!(N/2)2 so that annihilation events do not happen. Althou
the size of domains changes, the average valueL
5^x22x1&h is constant, due to symmetry. ThenL5const
with both types of dynamics. Our goal is to compute

xD~ t,tw!5 lim
h/T→0

1

Nh (
i 51

N

e i^si&h. ~31!

Notice that this is exactly the response~10! defined for the
Ising model. The subscriptD simply reminds that we are in
a situation with only two domains of fixed size.

Before discussing the behavior of the model let us co
ment on the relationship between this approach and the
presented in the preceding section. An obvious differenc
the presence of two domains instead of one. However, w
the choice L5N/2 the domains are equivalent and th
merely doubles the response. On the other hand, in the
gime t!(N/2)2 considered now,y(t,tw)5Dx(t,tw)/L!1.
Therefore, if this model is equivalent to the previous one
expect to recover the results withy(t,tw)!1 of the preced-
ing section.

With NCOP the behavior of the model can be deduc
from the knowledge of the responsexsing(t,tw) of the case
with a single kink located inx(t) and fixed boundary condi
tions discussed in Ref.@5#. For this system it was shown
exactly that

xsing~ t,tw!5 lim
h/T→0

1

Nh (
i 51

N

^si&he i5
2

NT
dx~ t,tw!

;~ t2tw!1/2, ~32!

where dx(t,tw)5^ux(t)2x(tw)u& is the average distanc
traveled by the kink in the time interval@ tw ,t#. Result~32!
allows one to deduce the behavior of the present model.
noting by xsing

(1) (t,tw) and xsing
(2) (t,tw) the responses assoc

ated to the two interfaces the total response is simply gi
by
4-7
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xD~ t,tw!;xsing
(1) ~ t,tw!1xsing

(2) ~ t,tw!;dx1~ t,tw!1dx2~ t,tw!
~33!

because the two interfaces are independent. Indicating
Dx(t,tw)5@dx1(t,tw)1dx2(t,tw)#/2}(t2tw)1/2 the average
distance traveled byD in the interval@ tw ,t# one finds

xD~ t,tw!;Dx~ t,tw!;~ t2tw!1/2. ~34!

Going back to the Ising model, assuming again that doma
are noninteracting, the response is obtained by multiply
xD(t,tw) times the number of domains presentr(t);t21/2,

x~ t,tw!.r~ t !xD~ t,tw!, ~35!

yielding

x~ t,tw!5x`S 12
tw

t D a

, ~36!

wherea51/2 andx` is the asymptotic value. Then, from
Eqs. ~19!, ~20!, and ~30! one recovers the behavior of th
previous model in the smally(t,tw) limit, as expected.

With NCOP this result has been obtained by letting
single interface move as in the original Ising model, name
with the same update rules for the spins. With COP this is
is more subtle. In the Ising model the diffusivity of domai
depends on time via Eq.~27!. In the present case, with
fixed size of the domains,D is constant. To keep this into
account, we consider a spin-exchange dynamics gener
by the modified probability

pT~si ,si 11!5min@n21/2~ t !e2DE/T,1#, ~37!

wheren(t) is a counter of evaporation events. With this ru
the diffusivity is proportional ton21/2(t);r(t), as in the
Ising model. The response of the model, obtained by num
cal simulations, is plotted in Fig. 6, and for long times

FIG. 6. The response of a pair of domains diffusing via K
wasaki dynamics with probability~37!. Simulations are presente
for a system ofN5105 spins withT50.7 andh51022 averaged
over 23105 realizations. The dashed line is thet1/3 behavior. Time
is measured in Monte Carlo steps.
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xD~ t,tw!;~ t2tw!1/3. ~38!

From Eq.~38! the response of the Ising model is obtain
through Eq.~35!, leading to the same form~36! as for NCOP,
but with a51/3. This shows that the present model, evolvi
with two different dynamical rules with NCOP or COP, give
rise to different responses. This agrees with the behavio
the Ising model, where bothx(t,tw) andC(t,tw) are differ-
ent butx(C) is the same.

The approach in terms of single domains is based on
assumption ~35! of their quasi-independence. We hav
shown that this hypothesis allows a description of the Is
kinetics in terms of scaling arguments and provides a g
agreement with the original model. We are now in a posit
to substantiate further the validity of this assumption
checking the accuracy of Eq.~35!.

From the knowledge ofx(t,tw) for the Ising model we
extract the effective response due to a single domain defi
by

x~ t,tw!5r~ t !xe f f~ t,tw!. ~39!

The accuracy of the independent domain approximation
be determined by comparingxD(t,tw) with xe f f(t,tw). With
NCOP this issue has been considered in Ref.@5# showing a
very good agreement. In particularxD(t,tw) and xe f f(t,tw)
both increase ast1/2 for large t. For COP the behavior o
xe f f(t,tw) is shown in Fig. 7. For larget, in particular,
xD(t,tw) andxe f f(t,tw) grow with the same exponent 1/3.

The results of this section point out the robustness of
mechanism generating the response ind51 which only re-
lies on the coarsening domain structure of the system. P
vided this character is maintained the global behavior of
susceptibility and, in particular, the convergence to a fin
nonequilibrium value, is the same.

- FIG. 7. The effective response of the Ising model with K
wasaki dynamics for a quench toT50.48 with tw533104 and h
51022. Data are averaged over 4000 realizations. The dashed
is the t1/3 behavior. Time is measured in Monte Carlo steps.
4-8
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VI. DISCUSSION

In this paper we have studied the off-equilibrium respon
of the 1d Ising model. We have shown that the fluctuatio
dissipation plot is the same with NCOP or COP. Ind51,
where the connection~2! with statics cannot be invoked, thi
universal character has a dynamical origin, as shown by
analysis of simplified models presented in Secs. IV and

An important issue is the relevance of the picture p
vided by the Ising chain for arbitrary dimension. Ind51
with NCOP the Ising model reaches equilibration on t
characteristic timeteq

NCOP5req
225exp(4J/T). As mentioned

in Sec. III this is the time necessary for flipping spins in t
bulk of domains; the same mechanism is also responsible
the equilibrium responsexeq(t2tw). The off-equilibrium re-

sponse, instead, develops in the regimet,teq
NCOP. Hence in

d51 two kinds of response exist, which are observed
different time scales separated byteq

NCOP. This feature gives
rise to the pattern presented in Fig. 3.

The cased.1 presents some differences. For quenc
below Tc global equilibration is never reached in an infini
system. Despite this fact the response can still be split into
equilibrium and an aging part: The bulk of domains, whi
behaves as a pure phase and attains local equilibrium,
ducesxeq(t2tw) which obeys Eqs.~1! and ~2!. Domain
walls, instead, are responsible for the nonequilibrium p
that obeys@5# the scaling form

Tx~ t,tw!5tw
2af S t

tw
D , ~40!

with

a5H ~d21!/4 for d,3,

1
2 for d.3,

~41!

and logarithmic corrections ind53. The dependence ofa on
dimensionality results from the competition between the d
of interfaces produced by the perturbation and the fo
caused by their curvature. Whena51/2, as ford.3, the
response is simply proportional tor(t) implying that a single
interface produces a response that does not depend on
This is what happens if interfacial spins simplypolarizeac-
cording to the random field on a microscopic time scale.
the other hand, from the knowledge of the behavior of
one-dimensional case, we know that the wandering of in
faces gives rise to a single-interface response growing at
2tw)1/2. Therefore, a natural interpretation is the followin
Curvature, which is absent ind51 becomes progressivel
more important asd increases, due to the coordination num
ber. The attempt to lower surface tension weakens the dri
domain walls and inhibits the response mechanism ass
ated with it. This progressively increases the value ofa with
respect tod51 as dimensionality is increased. Then, ford
.3 the motion of domain walls is fully governed by curv
ture whereas, ford,3 the drift mechanism partly compen
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sate the decrease ofr(t), resulting in a smaller exponenta.
Only at the lower critical dimensiond51, however, this
mechanism is so efficient as to balance exactly the loss
interfaces yieldinga50 and an asymptotic finite limitx` .

For d.1 the presence of an equilibrium and an o
equilibrium response, and the mechanisms whereby they
produced, strongly resemble the situation ind51. However,
while for d51 they are observed on different time scales,
d.1 they are both developed during the phase-ordering p
cess. Then, ford.1, since the equilibrium part alone obey
Eq. ~2!, in order for the total response to fit into the schem
~2!, the off-equilibrium contribution must vanish in the larg
tw limit. Equation~41! shows that this happens ford.1 but
the decay of the off-equilibrium response ford,3 is slower
than usually expected on the basis of the idea that the
dom field simplypolarizesthe interfacial spins ifd<3.

For d51 in the phase-separation regimexeq(t2tw) is
absent and only the off-equilibrium response is develop
which in this case does not vanish fortw→` and causes the
breakdown of the connection~2! with the statics.

In conclusion, with NCOP an overall discussion of th
response of the Ising model to stochastic perturbations
be given in terms of two mechanisms whose interplay
regulated by dimensionality. The equilibrium respon
which prevails ind.1, only relies on the structure of th
equilibrium state through Eq.~2! and, therefore, is indepen
dent from dynamics. In this paper it was shown that ind
51 also the off-equilibrium response is independent on
kinetic rules, although this property has a different orig
The possible universality of the out of equilibrium respon
in higher dimensionality and the generality of the scali
form ~40! are interesting issues that deserve to be inve
gated in the future.

As a final comment, we discuss the possible relevanc
our studies for systems with a vector order parameter witN
components. In this case spins basically rotate rather t
flip and this is totally different with respect to scalar system
The absence of bulk and interfaces prevents a straigh
ward extension of the concepts developed in this paper
the mechanisms by which the response is built up in
vectorial case is complex and still not well understood. Ho
ever, the exact computation of the response function in
solvable large-N model @18# has recently shown a patter
that resembles the behavior of scalar systems. Actually in
large-N model the response function can be explicitly sp
into an equilibrium and an off-equilibrium part. It can b
shown, moreover, that the former satisfies Eq.~2! while the
latter obeys Eq.~40! with an exponenta that vanishes at the
lower critical dimension of the model which, due to the ve
torial character, isd52. This close analogy with the scala
case shows that, although the microscopic dynamics is
ferent, the same competition between two mechanisms
the development of the response exists probably for ev
value ofN and that the same scaling relation~40! holds. This
suggests the idea that the off-equilibrium response may
independent from the dynamics also in vectorial systems
we have shown for the Ising model at the lower critical d
mension.
4-9
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