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Universality of the off-equilibrium response function in the kinetic Ising chain
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The off-equilibrium response functiop(t,t,,) and autocorrelation functio@(t,t,,) of an Ising chain with
spin-exchange dynamics are studied numerically and compared with the same quantities in the case of spin-flip
dynamics. It is found that, even though these quantities are different in the two cases, the parametric plot of
x(t,t,) versusC(t,t,) is the same. While this result could be expected in higher dimensionality, wii€e
is related to the equilibrium state, it is far from trivial in the one-dimensional case where this relation does not
hold. The origin of the universality gf(C) is traced back to the optimization of domains position with respect
to the perturbing external field. This mechanism is investigated resorting to models with a single domain
moving in a random environment.
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[. INTRODUCTION FDT because the main features of slow relaxation are fully
exhibited but the structure of their equilibrium state is simple

The generalization of the fluctuation-dissipation theorem . :
(FDT) to slowly relaxing systems, such as glasses, is an iSSL%]nd exactly known. While Eq1) is generally obeyef-5],

of foremost importance for understanding nonequilibriumt e validity of Eq.(2) in this case d_epend_s on Qimensionality.
processes. Ordinary FDT relates the autocorrelafiont,,) For d>.1’ Eq. (.2) h.OIdS a;ymptohcally, implying the same
and the integrated responggt,t,,) functions, which both quctuat|on-d|s§|pat|0n ratlp, and 'hencex(fC), for all these.
depend in equilibrium on the time differentet,,, wheret,, system§[3]._ This applies, in partlc_ular,_ to different dynami-
is the time elapsed after the sample preparation. A gener&fil reallzatlor_]s of the same Hamiltonian model such as fer-
feature of slow kinetics, instead, is the aging property,romagnetS with nonconserveéuICO_P) or c_onservec[QOP)
namely, the dependence of the time scale of relaxation on th%rder parametefd]. quever _the pl_cture is totally qmerent
timet,,. This feature generally shows up bothGit,t,,) and In the case of t_he Ising chain. .V\./'th NC.OP' H@) is not
x(t,t,). In the context of mean-field models for spin gIassesObeyed[S] and, instead, a nontrivia{(C) is found([6] that

- t be connected to static properties.

it was shown[1] that, for larget,,, x(t,t,,) depends on the canno .

two times through the autocorrelation function alone, . These res_ults_suggest that the naturexec) IS essen-
tially dynamical in this case. A natural question, then, is

x(tty) =x[C(t,ty)]. (1)  about which properties of the kinetics are reflectedybg).
In order to address this point, we study in this paper the
This property holds quite generally in a wide class of agingresponse of the one-dimensional Ising model with Kawasaki
systems where deviations from the ordinary equilibriumspin-exchange dynamics quenched to a low temperature, in
FDT, namely, Tx(C)=C(t,t)—C(t,t,), result in a non- the scaling regime preceding equilibration. In this case the
trivial fluctuation-dissipation ratioX(C)=—Tdy(C)/dC. order parameter is conserved and the microscopic mecha-
Recently, a theorem has been projed linking X(C) to  nism whereby coarsening of domains is produced differs

static properties, completely from the dynamics with single spin flip. With
NCOP interfaces are independent Brownian walkers whose
dX(C) —P(q) 2 density is progressively reduced due to annihilation events.
dC 4 With COP, instead, the motion of interfaces is mediated by

C=q . . . . .
evaporation, diffusion, and recondensation of single mono-

whereP(q) is the equilibrium probability distribution of the mers. Despite this completely different character of the dy-
overlaps. This opens the way to a classification of aginghamics, we show tha¢(C) is the same for COP and NCOP.
systems according to the structure of their equilibrium state®ue to the violation of the hypotheses of theorém this
[3] and to the recognition that the properties of the responsaniversal character cannot be traced back to statics but it is
to a perturbation are universal in systems sharing the sammaore likely to have a common dynamical origin. Since the
overlap distribution. basic coarsening mechanisms with COP or NCOP are pro-
The ordering process of ferromagnetic systems provides foundly different, other kinetic properties, of a more general
simplified framework for the study of the off-equilibrium and fundamental nature, determigéC). The analysis car-
ried out in this article shows that the total response can be
viewed as due to the elementary contributions given by

*Email address: corberi@na.infn.it single domains. In the kinetic process domains coarsen and
TEmail address: castella@pil.phys.aniromad.it translate and the complex interplay between these two
*Email address: lippiello@sa.infn.it mechanisms produces the response. Starting from this idea
SEmail address: zannetti@na.infn.it we introduce simple models where a single domain is al-
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lowed to diffuse in a random environment. In this frame- 10°
work, the elementary response generated by the domain can

be studied and from its knowledge the behavior of the origi-

nal Ising chain is inferred by means of scaling arguments.

The details of the rules for the motion do not change the

overall behavior of the response. This approach provides a

clear physical interpretation of how the response is produced _

in the Ising model. F

These considerations are of a general nature and apply, in
principle, to any dimension. On the other hand, the occur- G—oT=0.48,h
rence ind=1 of an off-equilibrium response that never van- = 1=0.70,h
ishes, as opposed to the cases wiithl, is due to the special ¢ ©T=070,h
character of domain walls motion in one dimension. Actu-
ally, in d>1 the evolution of a domain is the result of two }
competing drives. The first is the tendency to lower surface 9
tension by making interfaces straight. The second is the drift
towards regions where the random field is favorable. For FiG. 1. The kink density is plotted against timémeasured in
long times the first mechanism always prevails, and the remonte Carlo stepsfor quenches withT=0.48 andh=0 (black
sponse generated by the drift of domains is negligibleln  solid line) and T=0.7, both with the perturbatiorh 10~2, black
d=1, instead, domain walls are pointlike and surface tensiomold solid ling and without fi=0, white solid line collapsing on
does not play any role; moreover the drift mechanism is sahe curve withh=10"2). Data refer to numerical simulations of a
efficient as to generate a nonvanishing response even in tisgstem ofN=10° spins, averaged over 10 realizations. The dashed
limit of large times, when the interface density decreases téine represents the > law.
zero.

This paper is organized in six sections. Section Il is dethree classes withE=4J,0,—4J. The first kind of process
voted to a description of the COP dynamics of the unperis evaporation, namely, the separation of a spin from the
turbed Ising chain. In Sec. Ill the effects of a perturbation arédboundary of a domain. Processes wik =0 are the diffu-
discussed and the response function is introduced, showirgjon of a single spifmonomey in the bulk of a domain of
the analogy with the NCOP dynamics and the universality othe other phase. When a diffusing monomer reaches an in-
x(C). Models for a single diffusing domain are discussed interface a condensation event occurs: The spin joins a domain.
Secs. IV and V, where scaling arguments are presented fbhis process implies an energy chanhg= —4J.
illustrate the common origin of the response within the two  Evaporation is an activated process occurring over a char-
types of dynamics. In Sec. VI we discuss the relevance oécteristic timer,,=exp(4)/T). For low temperatures,, is
our results for different systems and draw some conclusiondarge and one observes a long intertal ., during which

evaporation practically does not happen. In this regime a
Il. UNPERTURBED DYNAMICS reduction of the kink density(t) can be obtained only by
the diffusion and condensation of the monomers present in

We consider the one-dimensional Ising model with ferro-the initial state. In order to do this single spins move a dis-
magnetic nearest-neighbor coupling constant, whose Hamitance of the order of the initial coherence lengt a typi-
tonian I1s cal time &2. This leads to a decal7,8] of the density of

N diffusing single spins over a characteristic timg~ &2. In
the case we are concerned with, a quench from very high
HO({Si}):_‘]izl SiSi+1s 3 temperature,rs is of order unity and one observes a fast
decay to a plateau on short time scdlesg. 1). In the regime

wheres;= * 1. The system is quenched from an uncorrelatedrs<t< 7e, N0 diffusing spins are left ang(t) remains con-
high temperature equilibrium state to the final temperafure stant. Attimes of ordet,, evaporation events begin to occur
Evolution takes place through Kawasaki spin-exchange dyand the dynamicsestarts(Fig. 1). Evaporated spins diffuse
namics, i.e., swaps between antiparallel nearest-neighb@nd they may recondense on a kink different from the one
spins. In this way magnetization is a conserved quantity. Th&here they were emitted. This is the well known mechanism
model describes lattice gases or binary alloys. The probabileading to the decay(t)e(t/7,,) ™ [7]: in this regime,

0
107 N
0

ity of exchangings; ,s; . ; is assumed to be dynamic scaling is obeyed. This behavior lasts urtil
=757 such thatp(750") = peq=exp(—2JIT), the equilib-
pr=min[e 2¥T 1], (4)  rium kink density. At this time domains reach a size such that

a second monomer is emitted when the first one is still dif-
whereT is measured in units of the Boltzmann constant andusing. When they meet they form a stable dimer and this
AE=2J(s;_1Si+Si+1Si+2) IS the energy change. process exactly balances the domain annihilation due to the

The basic features of the dynamics following an instantaevaporation-condensation mechanism, so hateeps its
neous quench are discussed in R&f. Depending on the equilibrium value. Regarding the data presented in Fig. 1, for
energy change elementary moves can be distinguished inib=0.7 the exponent 1/3 is not clearly observed because the
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i ' nent\ = 3/2 but then the decrease becomes faster, indicating
that the system is close to reaching equilibrium. A second
important observation, regarding Fig. 2, is the convergence
of C(t,t,,) towards the scaling behavi(ﬂ(t,tw)=f3(twlt),

as expected quite generally for slow relaxat{d2] and in
particular for coarsening systerh3]. However, differently
from NCOP, the convergence in this case is very slow and
very larget,, must be considered in order to exhibit a good
data collapse.

C(tt,)

IIl. RESPONSE TO A PERTURBATION

Let us consider the Ising model quenched to temperature
T in zero field. At timet,, a random field

(-, ’ h—he ®)

FIG. 2. The autocorrelation functioB(t,t,,) is plotted against
rescaled time t(—t,)/t,. The dashed line represents the law
[(t—tw)/ta] Y2

90" 107

is applied, so that the Hamiltonian is changed into

N
N | H=Ho— 2, his;. (7
system equilibrates too soon. For=0.48 the effective ex- =1
ponent gradually decreases toward 1/3. At the longest tim

simulated the effective exponent 4s0.3. the field takes randomly only two values= £ 1, with ex-

The autocorrelation function is defined as pectations
. =0, (8
1
Clt,tw) =g 2 (Si(Dsi(tw)), 5 Ge=5,. )

o ) ) ~ The probability of exchanging two spirss,s;, 1 is EQ. (4)
where('- . ->' indicates thermal averaging. This quantity is yith AE=2J3(S;_1Si+Si+1Si+2) + 2N(Si€ +Si 1€ 41). We
shown in Fig. 2.C(t,t,,) strongly depends on the range of considerh/T sufficiently small in order to be in the linear
times (.,.t) considered. In the casg,<rgy" considered response regime. We are interested in the scaling regime, i.e.,
here the behavior of the autocorrelation function is differentjmes such thap(t)> peq. Moreover we want the qualitative
for t<75y" or t>750F. For t<7g>" C(t,t,) decays as features of the dynamics, presented above, to be unaffected
[p(t)/p(ty)]*. The exponent depends ort,, as follows: by the external field. This imposes an additional constraint
Whent,, =0, the upper bound <d, originally proposed by p(t)> ¢ 1(h), where &(h)=4J%/h? is the Imry-Ma length
Fisher and Hus€9] provides the correct value=1 for the  [14]. For the values oh andT consideredg‘l(h)<peq S0
conservedi=1 Ising model, as shown analytically and nu- that p(t) is unchanged by the presence of the random field

merically in Ref.[10]. Instead, fort,, chosen well inside the from the instant of the quench up to equilibratigFig. 1).

scaling regime, Yeung, Rao, and De$ai] found a lower We consider the integrated response function
bound\=3/2 ford=1. Sincex =1 for t,,=0 this constraint N

implies the dependence afont,,. To our knowledge, there 1 _

are no results for the actual value of this exponent wihen X(t!tw):h/“T”lom 21 &(Sidn, (10)

#0. From the data presented in Fig. 2 one observes a power-

law decay consistent Witﬁ:(t'tw)No(gw/t)llz for the cases \yhere(...), denotes average in presence of the external
tw=10%,10°. Recalling thatp(t)~t "% in the range of time  fie|q. Before discussing the response of the model with COP,
considered, one obtains=1.66>3/2. In this way we show et ys priefly recall the behavior with NCOP. In this case
that the lower bound determined in Ret1] is correct and  equilibrium is reached because spins are flipped spontane-
that the value ok with t,, chosen inside the scaling regime qys|y in the bulk of ordered domains; the characteristic time
zf'ggrem fr'o;n. thte (t::StetzmeTu%:é(l:;ua”y,ldtht? valuex _ for this process is-gqc_opz_exp(ﬁm. The asymptotic value

--00 may Indicate that the value= 5/2 could beé asymp-  qf the response function is the equilibrium susceptibility
totically correct. In order to check this point lower tempera-
tures and larger waiting times should be considered. By plot- Xeq= 1T, (11
ting C(t,t,,) againstp(t)/p(t,) we have also checked that
the curve witht,=10° gives the same exponent>3/2,  namely, lim_.Tx(t,t,)=1. In equilibrium the bulk of do-
whereas the smaller exponent observed in Fig. 2 is simplynains is responsible for the response because spins anti-
due top(t) decaying with an effective exponent considerablyaligned with the random field are more likely to be reversed
smaller than 1/3 in the range of times plotted in the figure by thermal excitations. However, for times rg‘gopspins in

For t,,=10° the curve starts decaying with the same expo-the bulk do not flip; the response observed in this regime is
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FIG. 3. The integrated response function is plotted against the FIG. 4. The integrated response function is plotted against the
autocorrelation function with NCOP. The dashed line is the casewutocorrelation function with COP. Data are obtained from numeri-
with J=o0. cal simulations of a system di=10° spins withh=10"2, aver-

aged over 4000 realizations. The dashed line is the case with NCOP
then of nonequilibrium nature. Since the bulk is frozen,andJ=w, as in Fig. 3.
x(t,ty,) must be provided by interfaces. Specifically the mo-
tion of kinks is such as to optimize the position of domainSsgme curve as witd=c is followed from C(ty ty,)=1
with respect to the random field, building up a finite responsgjown t0Ceq= C(qucop,tw). For C(t,t,,) <Ceq, namely, for
[5]. The range of times over which the nonequilibrium pat-~. ;NCOP “ho system goes to equilibriumy(C) departs
tern is observed can be expanded by letfihg 0 (keeping frome(%he master curve wit=% and approacheg,,. For
h/T small, for linear response theory to hplor J—o. We . cop
refer to the latter limit for simplicity, that has the advantageleEd tw» C‘?q grows with temperfa\ture, becaqsgq de-
of being easily implemented numerically by forbidding the C'€aS€s ag is mcreased. Alternatlvely, for a given tempera-
flip of spins in the bulk. With=cs, Tglé:op:oo and the ture,C?q grows by_lncreqsmgw. In conclusion, the master
system never equilibrates. The exact solution of the mode(ér;urve IS folloyved in a'W|der range k?y decrgasm\gor T
[6] with =00 yields the aging form because in FhIS _wagzeq is reduced. This explains the behav-
ior of x(C) in Fig. 3.

2 t For Kawasaki dynamics the kinetic process is more com-
Tx(t,t,)=—arcta . 1 (12 plex than in the nonconserved case. The different coarsening
& w mechanism does not simply change the growth law expo-

nent, but even the two-time quantities considered here are

that converges, in the largdimit, to ! " - )
radically modified with respect to NCOP. In particular, as

1 discussed in the preceding section, the exponen8/2 dif-
TXe="= (13)  fers from the valug15] A=1 for Glauber dynamics. Given
V2 these differences the fact that the fluctuation-dissipation plot

for larget. For finiteJ, as already anticipated, the response ofwmS out to b.e the same for NCOP and C.OP' as will be
the model is the same as with=c for times t< NCOP shown below, is unexpected and far from being trivial.

while, for larger times, the equilibrium susce tibili§3q is re- The fluctuation-dissipation plot with COPis shown in Fig.
' 9 ' q P y 4. Curves with differentt,, collapse on the same master
covered. curve forC(t,t,,)>C.4. The collapse of curves with differ-
For what concerns the generalizatith) of the FDT, no- v ed-. PSE : .
. , A entt,, proves the validity of Eq(1) in the scaling regime
tice that Eq.(12) obeys the scaling formy(t,tw) = x(tw/t).  even with COP. Moreover, this master curve is the same as
Hence eliminatingt,, /t with C(t,t,,)=C(t,,/t) with J=o with NCOP. As for NCOP, the collapse occurs only when

one finds both timest andt,, belong to the scaling regime. With NCOP
2 scaling is obeyed starting from a microscopic titgewhich
_Ne scol 2|l 14 is temperature |ndepende[ﬁ6], with COP this regime is
x(©) T arcta+ \/—CO< 2 C” (149 entered afterre,, which depends off. Therefore, for low

) _ S o temperatures the time scales over which curves with different
This curve is plotted in Fig. 3. In the limi€(t,t,)—0, { coincide are completely different in the two cases, as re-
namely,t—, the valuey., is recovered, as previously dis- yealed from the waiting times reported in Figs. 3 and 4.
cussed. For finite) the behavior ofC(t,t,,) and x(t,ty) is  Comparing the two figures, one also concludes that changing
unchanged with respect to the cadew up to 7hs". t, or T only produces a shift o€, the point wherey(C)

Therefore, in the fluctuation-dissipation plot in Fig. 3 the deviates from the master curve, in complete analogy for both
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dynamics. Then, on the basis of what is known with NCOP,
we expect in the zero temperature limit the master curve to
be followed down taC(t,t,)=0. Let us stress that the cor- sl

i ' o
| cepecpedeaddeggso
!
|
relation and the response functioae differentfor the two ','
{
i
i
!

bgeges

dynamics. Only when the respongét,t,,) is expressed as a
function of the correlationC(t,t,,) one obtainsthe same — o8l
fluctuation-dissipation relatiog(C). .. !

The universality of the nonequilibrium response with re- = !

spect to the type of dynamics naturally raises the question of (= o}
a possible common fundamental origin. As proposed in Sec. é T
7z,

1

{

|

'

8

0

I, this must be of a dynamical character, since the connection
(2) between statics ang(C) cannot be invoked ird=1.

The main dynamical feature of phase ordering is the pres-
ence of a coarsening structure with many competing do- o
mains. This suggests to look for the underlying universality 5 Ax(tLE)
in the response of a single domain to the perturbation. In v
order to test this idea, in the following sections we investi- o 5 The scaled single-domain resporBe TxPi(t,t,) is
gate simplified models for the motion of a single domain.pbtted againstAx(t,t,)/l for T=0.7, h=10"2, and ’txl=0.
Underlying this approach is the assumption thét,t,) of  Gjrcles, squares, and diamonds correspond to domains ofl size
the whole system can be seen as the sum of the response 0fig 20,40, respectively. Averages are taken ovér tigjectories.
single domains considered independent. Correlations berhe dashed line is the analytic behavior for sndatl Triangles are
tween domains are only responsible for the growth of theikhe response of a domain whose average Is{zp grows according
typical size. In this way we are able to identify the diffusive to L(t)=10+ \t/8. In the inset the behavior afx(t,t,,) is plotted
wandering of domains as the origin of the nonequilibriumfor a domain of sizé =40 with t,=0. The dashed line represents
response, both for NCOP and COP dynamics. the law ¢—t,)Y2

lattice spacing the sum in E@l5) can change by a value
0,+2,—2. In the first two cases the energy is unchanged or
Let us consider an isolated domain of up spins cover- decreased; in the last ondAE>0 and the probabil-
ing the segmentj,j+1] of an infinite one-dimensional lat- ity that such a move is accepted is ex@VT). Then,
tihce-IA quenched random varir?tﬂeis defined on t”he si;es of averaging over the trajectories and the random field,
the lattice via(6,8,9. At each time ste is allowed to ; =D, — i S
move rigidly o(ne Ia?tice unit on the rigthﬂzl)r on the left with Eq._(15) gives Tx " (tw+ 1tw) = “mh/Tﬁ.O[T/hKE.'EP' €in
= limp7_oT[1]—exp(=2nT)]/(2h). Taking the limit h/T

probability given by Eq.(4), with AE=h;—h;,,,, or AE . . ~p
=h;,;—h;_,, respectively. The model can be regarded as anjo the linear response function followBy™'(t,,+ 1.t,)

Ising chain with an initial condition containinigup spins in _
the interval j,j+1] in a sea of down spins. This Ising model  For long timesy”(t,t,,) approaches, assuming equilibra-
is governed by a dynamical rule that conserves the magnetiion, the static susceptibility
zation and allows only rigid translations of the up domain.
AE is then exactly the energy gain computed through the ~D, T dIlnZ(h,T)
Ising Hamiltonian(7) with i running over the sites occupied Xeg™ h/'TToﬁ " oh
by the domain.

For h=0 the landscape is flat and the positiorof the where
center of the domain performs a random walk. Provided the
linear response regimen(T—0) is considered, also for fi- |
nite h the root-mean-square displaceman(t,t,,) in a time _ —[h(I-2K)}/T
interval[t,, ,t] obeysAx(t,t,)~vt—t,, as shown in the in- Z(h.T) IZO P® a
set of Fig. 5. The response function of the domain is defined
as is the partition function. Her& is the number of sites inside

the domain where;=1 andp,=( 'k)2‘I is the probability of
having a particular value &€ From Eq.(17) one easily finds
The notatiory - - - )y, indicates averaging, for a single realiza-

h |
cosl{ ?H (18
tion of the random field, over the trajectories ®f. Notice o _—
that, differently from Eq(10), i runs only over sites ob,.  Yyielding TXe(::||mh/T-»O(|T/h)tanhh/T)[COShh/T)]lil:|-

Let us consider the behavior gf(t,t,,) for short times. The behavior ofy”(t,t,,), obtained numerically, is plot-
Initially, at t=t,,, the response is zero. By moving one ted in Fig. 5, showing the validity of the scaling form

IV. A SINGLE-DOMAIN MODEL WITH RIGID DIFFUSION

(16)

X2 (tt,) = lim %<2 ei> : (15
hT—0'"\ieD h
Z(h,T)=

066114-5



CORBERI, CASTELLANO, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E65 066114

TYPi(tt,)=lg(y), (190 lim.x(t,ty)=xeq=L/T. This is indeed the valugll)
found for the original Ising chain.
wherey(t,t,,) =Ax(t,t,)/I. The scaling function behaves as  The second case, lim..y(t,t,,) =const>0, occurs when
Ax(t,t,) andL(t) grow with the same exponent. This hap-
y for y<1, (20 Pens in the scaling regime, both with spin-flip or Kawasaki
1 for y>1, dynamics. With NCOP this is true because interfaces are

Brownian walkers,
in agreement with the analytical results for short and long

times. AX(tty)~(t=t,)" (24)
So far we have studied a model where the dizd the L

domain is conserved by the dynamical rule. However, in orYVhile it is well known[13] that

der to apply this result to the description of the Ising chain, L(t)~t2 (25)

where domains coarsen, we consider now a slightly modified '

version where the size of the single domain varies stochasti- With spin_—excha_nge dynamic_s the behavigrmt(t,_tw)
cally while growing on average. In such a situation, we in-Can be obtalngd \.N'th th? following argument: The displace-
dicate withl(t) the size of the domain at i with L(t) ment of domains is mediated by the evaporation and conden-

. - sation of monomers. When a monomer travels a distance
the average of(t), and definey(t,t,) via L(t), leaving one domain and joining the nearest, one of the
y(t,t,) = AX(t,t,)/L(1). (21)  boundaries of each of the two domains is displaced by one
lattice unit. The number of monomers per unit time that
We have performed numerical simulations where the sizdeave a domain and reach the neighbor instead of recondens-
I(t) of D, was increased with a stochastic rule such thaing on the original one i(t) [7]. Hence, on average, it
L(t)= L(O)+a\/f, with L(0)=10 anda=1/8 (these values takes atime~L(t) to move a domain by a unitary distance.
are chosen for numerical conveniencgigure 5 shows that Since domains move randomly the law of Brownian motion
even in this case the scaling forth9),(20) holds.

aly)=

[Ax(t,t,)]°=2D(t—t,) (26)
Connection with the Ising model is obeyed, with a diffusion coefficient
From the knowledge of the response of a single domain,
we can recover the behavior of the Ising chain, where many D~p(1). (27)

domains compete, by assuming that the latter can be aq-_. .
equately described by a collection of quasi-independent déE_Jsmg the appropriate growth law for COP,

mains of average size(t). This means that all effects pro- L(t)=p(t) " 1~t¥3 (28)
duced by correlations between domains, apart from the
increase ofL(t), are supposed not to be relevant. This as-one gets
sumption will be further discussed in Sec. V.
The overall response of the Ising model is then given by AX(t,ty) ~ [ (t—ty,) /P2, (29

~p Hence for long time\x(t,t,,) ~t#, with 8=1/2 for NCOP
X(t’tw):Z P(LYX (), (220 and g=1/3 for COP. Comparing Eqg24), (25), (28), and
(29) one concludes, as already anticipated, thait,t,)

whereP(l,t) is the fraction of spins belonging to domains of ~L(t) regardless of the dynamical rule. Hence, recalling Eq.
size| at timet, which obeys[17] the scaling formP(l,t) (21) one obtains wittboth dynamics the universal form
=L(t) " *[I/L(t)]. The analysis can be carried out more 12
easily with the approximatiof(x)=&(x—1), i.e., assuming y=yw< 1— t_W> , (30)
that all domains have exactly the same di£¢). Then t

~ 1 wherey,, is a constant that may depend on the dynamical
X(t,tw):L(t)fl)(DL(t,tw)z$g(y), (23 rule. Inserting this expression into E(R3) one recognizes
that the global response obeys the scaling behayfot,,)
where y(t,t,,) is defined by Eq.21) and Ax(t,t,) is the =3((tW/t) which, as discussed in Sec. lll, is correct for the
average distance traveled by domains of dif€). On the Ising chain. Moreover one also obtains {imy=y. <%
basis of the large time behavior of(t,t,), three situat- and, therefore, an asymptotic nonequilibrium valye

ions can be distinguished, namely, {imy(t,t,)=2>, =0(Y=)/T# xeqis generated. This limiting value is different
lim,_..y(t,t,)=const=0 or lim_.y(tt,)=0, giving rise  from the static susceptibility., becausgy.. is finite, as op-
to different values for the response. posite to the equilibrium case discussed above where

The first case occurs in the equilibrium state of the Isinglim,_,..y=c. This is in agreement with the behavior of the
model because domains diffuse while their size stays coneriginal Ising model(13), with both dynamics.
stant due to the formation of new kinks. On the basis of Eq. Our approach does not allow the evaluatioryof How-
(23), for the total response of the Ising chain one obtainsever it reproduces the main features of the nonequilibrium
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response and offers an insight into what goes on after a per= N/2+ 1. We consider both spin-flip and spin-exchange dy-
turbation has been switched on in the one-dimensional Isingamics, and require the initial structure with only two do-
model. In particular, the model points out clearly which is mains of opposite sign to be preserved at all times. This
the mechanism whereby the response is produced. Actuallgondition is guaranteed if the temperature is low enough.
the domain responds to the perturbation by moving so as tblowever simulations at very low would be numerically too
optimize its position with respect to the random field. Such ademanding, in particular for COP. For this reason we imple-
sharp statement is made possible in this context by the fachent the aforementioned condition in a different way: With
that the dynamical rules do not allow any other possibility NCOP we let]J=« by forbidding flips in the bulk. For COP
and indicates that the same mechanism is at work also in thee use a modified dynamics where new dimers are not al-
Ising chain. The discussion presented insofar shows also thidwed to form. Specifically, when two monomers meet, one
another physical ingredient plays a fundamental roledin of the two particles is removed and attached randomly to
=1: The convergence to a finite value wft,t,,), namely, another kink. With these rules a configuration with only two
lim,_..y(t,ty) =y.#0. This property holds because the dis- domains persists.

placement of domains id=1 is proportional to their aver- Let us focus on one of the two domains, indicated iith
age size. With these ingredients the one-domain model prawith the center located inxg +x,)/2. With COP the system
dicts a finite limiting value lim. .. x(t,t,)=x. of the evolves via exchanges of monomers between the two bound-
response of the Ising chain. We emphasize that the propergries of D. Since at lowT at most one monomer is present
lim,_.y(t,t,) =Y. # 0 is far from being trivial. Although we the sizel=x,—x; of D is practically conserved. With
restrict the analysis in this paper to one dimension, we beNCOP, on the other hand, interfaces diffuse independently
lieve this to hold only in thel=1 case. As discussed in Sec. and the size changes. We consider the range of titnes
I, in one-dimension domains diffuse in order to lower the <(N/2)? so that annihilation events do not happen. Although
magnetic energy in absence of the additional force producethe size of domains changes, the average value
by surface tension, because kinks are pointlike objects. IR=(x,—x,)p, iS constant, due to symmetry. Thén=const
d>1, instead, the displacement of an interface is not onlywith both types of dynamics. Our goal is to compute

ruled by the random field but is also governed by curvature.

This additional mechanism lowers surface tension and com- 1 N

petes with the tendency to lower the magnetic energy. The xP(t,t,)= lim Nh E €(Si)n- (31
weakening of the drift of domains limits their motion so that hT—0 N =1

Ax(t,t,) grows more slowly thanL(t). As a result . o i
lim,_..y(t,t,)=0 and the response produced in this Way,Nptlce that this is exactl_y the_ responsm) defined for thg
from Egs.(19) and (20), vanishes. Therefore, we expect the Ising model. The subscrigd simply reminds that we are in

third possible behavior of(t,t,) introduced above to be @ Situation with only two domains of fixed size.
realized ford>1. Before discussing the behavior of the model let us com-

ment on the relationship between this approach and the one

presented in the preceding section. An obvious difference is

V. A SINGLE-DOMAIN MODEL WITH SPIN EXCHANGE the presence of two domains instead of one. However, with
DYNAMICS the choiceL=N/2 the domains are equivalent and this

In the preceding section we have discussed the diﬂ‘usiorqn.er'aly doubles the response. On the other hand, in the re-

< 2 i = <
of a rod of average size(t). With this dynamics we have gime t<(N/2)" considered nowy(t,t,)=AX(t,t,)/L<1.

obtained the formuld19) for the response. The connection Therefore, if this model is equiv_alent to the previous one we
with the Ising model was then made possible by scaling arSXpect to recover the results wigkft,t,,) <1 of the preced-

o ing section.
guments wheréx(t,t,,) andL(t) were assumed priori to , .
behave as in the NCOP or COP Ising model. The dynamic§ With NCOP the behavior of the model can be deduced

of the rod, however, is quite different from the actual behav- rom th? know_ledge of th? responggmg(t,tw) of the case
ior of the Ising model, where generally domains do not move\’.vIth a smgle k'nk. located ix(t) ar!d fixed bOL_mdary condi-
as a whole. Furthermore, while diffusion is the mechanisn{'onstld":ﬁutssed in Ref5]. For this system it was shown
whereby interfaces move in the Ising model with NCOP, acxactly tha

stated by Eq(24), with COP the law(29) is obeyed, showing

N
a non-Brownian character. Despite these shortcomings of the o 1 —_ 2
) - . ing(Ltw)= lim —— Sin€i == oX(t,t
model, we have obtained a good description of the Ising Xsinglt:tw) wT_oNh 2‘1< néi N ()
chain and this suggests that the actual details of the dynamics
are irrelevant. ~(t—ty)*?2 (32

In this section we introduce an improved single-domain
model that takes into account the different kinetics for NCOPwhere 8x(t,t,)=(|x(t)—x(t,)|) is the average distance
and COP. In particular, for COP, the evaporation-traveled by the kink in the time intervat,, ,t]. Result(32)
condensation mechanism that rules the evolution is takeallows one to deduce the behavior of the present model. De-
into account. noting by x{P(t,t,) and x{)(t.t,) the responses associ-
We study an Ising chain of siZ¢ with periodic boundary ated to the two interfaces the total response is simply given
conditions and two interfaces initially located iy=1x, by
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107 . . 10°

10° 10° 10* 10°

=L,

FIG. 6. The response of a pair of domains diffusing via Ka-  FIG. 7. The effective response of the Ising model with Ka-
wasaki dynamics with probability37). Simulations are presented wasaki dynamics for a quench To=0.48 witht,,=3x10* andh
for a system ofN=1C° spins withT=0.7 andh=10"2 averaged =10"2. Data are averaged over 4000 realizations. The dashed line
over 2x 10° realizations. The dashed line is th€® behavior. Time  is thet behavior. Time is measured in Monte Carlo steps.
is measured in Monte Carlo steps.

D, 1/3
(t,ty) ~(t—1t,) """ (38
XP(tt) ~ X Gt t) + xXEg(ttw) ~ S () + SXa(t ) X !
(33
) . o _From Eq.(38) the response of the Ising model is obtained
because the two interfaces are independent. Indicating W't{hrough Eq/(35), leading to the same for(36) as for NCOP.

— 1/2 ’ ’
AX(t,tw) =[x (t,ty) + O%p(t, 1) ]2 (1= 1,,) " the average  p ¢ with o= 1/3. This shows that the present model, evolving
distance traveled b in the intervalft,,,t] one finds with two different dynamical rules with NCOP or COP, gives
rise to different responses. This agrees with the behavior of
the Ising model, where botk(t,t,,) andC(t,t,,) are differ-

Going back to the Ising model, assuming again that domain€nt Putx(C) is the same.

are noninteracting, the response is obtained by multiplying The a_pproach in ‘em?s of sin_g_le domains is based on the
¥2(t,t,) times the number of domains presgift) ~t~ 2 assumption (3_5) of the|r_ quasrmdepend_enge. We ha\_/e
shown that this hypothesis allows a description of the Ising

x(t,t)=p(t)x2(t,t,), (35)  kinetics in terms of scaling arguments and provides a good

agreement with the original model. We are now in a position

yielding to substantiate further the validity of this assumption by
checking the accuracy of E35).

From the knowledge ok(t,t,,) for the Ising model we
extract the effective response due to a single domain defined
by
where a=1/2 and y., is the asymptotic value. Then, from
Egs. (19), (20), and (30) one recovers the behavior of the
previous model in the smajl(t,t,,) limit, as expected. X(68) = p(O Xeri(ttw). (39

With NCOP this result has been obtained by letting the
single interface move as in the original Ising model, namely.
with the same update rules for the spins. With COP this issu
is more subtle. In the Ising model the diffusivity of domains

depends on time via E(27). In the present case, with a .
fixed size of the domaing) is constant. To keep this into V&Y good agreement. In particulgP(t,t,) and yer(t,t)

account, we consider a spin-exchange dynamics generat@&’th Increase as!? f(_)r Ia.rge L. For COP th_e behgwor of
by the modified probability Xeff(t,ty) is shown in Fig. 7. For large, in particular,

xP(t,t,) and yes(t,t,) grow with the same exponent 1/3.

pr(si,Si+1)=min[n~Y4t)e 4T 1], (37 The results of this section point out the robustness of the

mechanism generating the responsealinl which only re-
wheren(t) is a counter of evaporation events. With this rulelies on the coarsening domain structure of the system. Pro-
the diffusivity is proportional ton~Y2(t)~p(t), as in the vided this character is maintained the global behavior of the
Ising model. The response of the model, obtained by numerisusceptibility and, in particular, the convergence to a finite
cal simulations, is plotted in Fig. 6, and for long times nonequilibrium value, is the same.

xP(t ) ~ AX(t,ty) ~ (t—t,,) 2 (34)

tw) «
1- 7] (36)

X(tt) = X

The accuracy of the independent domain approximation can
Be determined by comparing’(t,t,,) with xes(t,t,). With

NCORP this issue has been considered in Refshowing a
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VI. DISCUSSION sate the decrease pft), resulting in a smaller exponeat

In this paper we have studied the off-equilibrium responsénly at the lower critical dimensioni=1, however, this
of the 1d Ising model. We have shown that the fluctuation- mechanism is so efficient as to balance exactly the loss of
dissipation plot is the same with NCOP or COP.dr:1, interfaces yieldinga=0 and an asymptotic finite limig.. .
where the connectio(®) with statics cannot be invoked, this For d>1 the presence of an equilibrium and an off-
universal character has a dynamical origin, as shown by thequilibrium response, and the mechanisms whereby they are
analysis of simplified models presented in Secs. IV and V. produced, strongly resemble the situatiordin 1. However,

An important issue is the relevance of the picture pro-while for d=1 they are observed on different time scales, for
vided by the Ising chain for arbitrary dimension. éh=1  d>1 they are both developed during the phase-ordering pro-
with NCOP the Ising model reaches equilibration on thecess. Then, fod>1, since the equilibrium part alone obeys
characteristic timery; ©"=p.=exp(4IT). As mentioned Eq. (2), in order for the total response to fit into the scheme
in Sec. Il this is the time necessary for flipping spins in the(2), the off-equilibrium contribution must vanish in the large
bulk of qua|ns; the same mechanism is also _rgsponsmle fq\rN limit. Equation(41) shows that this happens fde>1 but
the equilibrium responsge(t—ty). The off-equilibrium re-  1he gecay of the off-equilibrium response fibx3 is slower
sponse, instead, develops in the regimery°. Hence in  than usually expected on the basis of the idea that the ran-
d=1 two kinds of response exist, which are observed ordom field simplypolarizesthe interfacial spins itl<3.
different time scales separated b °". This feature gives For d=1 in the phase-separation regimgq(t—t,) is
rise to the pattern presented in Fig. 3. absent and only the off-equilibrium response is developed,

The cased>1 presents some differences. For quenchesvhich in this case does not vanish figqr—c and causes the
below T, global equilibration is never reached in an infinite breakdown of the connectiof2) with the statics.
system. Despite this fact the response can still be splitinto an In conclusion, with NCOP an overall discussion of the
equilibrium and an aging part: The bulk of domains, whichresponse of the Ising model to stochastic perturbations can
behaves as a pure phase and attains local equilibrium, prive given in terms of two mechanisms whose interplay is
duces xe(t—ty) which obeys Egs(1l) and (2). Domain  regulated by dimensionality. The equilibrium response,
walls, instead, are responsible for the nonequilibrium partvhich prevails ind>1, only relies on the structure of the
that obeyd5] the scaling form equilibrium state through Ed2) and, therefore, is indepen-

dent from dynamics. In this paper it was shown thatdin
=1 also the off-equilibrium response is independent on the
.t kinetic rules, although this property has a different origin.
Tx(ttw) =t f| =, (400 The possible universality of the out of equilibrium response
" in higher dimensionality and the generality of the scaling
with form (40) are interesting issues that deserve to be investi-
gated in the future.
As a final comment, we discuss the possible relevance of

(d—1)/4 for d<3, our studies for systems with a vector order parameter Nith

= (41) components. In this case spins basically rotate rather than
1 . .. . .
3 for d>3, flip and this is totally different with respect to scalar systems.

The absence of bulk and interfaces prevents a straightfor-
and logarithmic corrections id=3. The dependence afon  ward extension of the concepts developed in this paper and
dimensionality results from the competition between the drifthe mechanisms by which the response is built up in the
of interfaces produced by the perturbation and the forcerectorial case is complex and still not well understood. How-
caused by their curvature. Whexr1/2, as ford>3, the ever, the exact computation of the response function in the
response is simply proportional pgt) implying that a single  solvable largeN model [18] has recently shown a pattern
interface produces a response that does not depend on tinthat resembles the behavior of scalar systems. Actually in the
This is what happens if interfacial spins simgglarizeac-  largeN model the response function can be explicitly split
cording to the random field on a microscopic time scale. Orinto an equilibrium and an off-equilibrium part. It can be
the other hand, from the knowledge of the behavior of theshown, moreover, that the former satisfies E).while the
one-dimensional case, we know that the wandering of interfatter obeys Eq(40) with an exponena that vanishes at the
faces gives rise to a single-interface response growing as (ower critical dimension of the model which, due to the vec-
—t,) Y2 Therefore, a natural interpretation is the following: torial character, isl=2. This close analogy with the scalar
Curvature, which is absent id=1 becomes progressively case shows that, although the microscopic dynamics is dif-
more important asl increases, due to the coordination num-ferent, the same competition between two mechanisms for
ber. The attempt to lower surface tension weakens the drift ofhe development of the response exists probably for every
domain walls and inhibits the response mechanism associalue ofN and that the same scaling relati@td) holds. This
ated with it. This progressively increases the valuaofith  suggests the idea that the off-equilibrium response may be
respect tod=1 as dimensionality is increased. Then, tbr independent from the dynamics also in vectorial systems, as
>3 the motion of domain walls is fully governed by curva- we have shown for the Ising model at the lower critical di-
ture whereas, fod<3 the drift mechanism partly compen- mension.
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